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Sequences in a weighted graph and 
characterization of partial trees 
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Abstract—  In a weighted graph, the arcs are mainly classified into α, β and δ. In this article, some sequences in weighted graphs are 
introduced. These concepts are based on the above classification. Characterizations of partial trees and some necessary conditions are 
obtained. It is shown that β sequence of a partial tree is a zero sequence.   
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1 INTRODUCTION                                                                     
RAPH theory has now become a major branch of math-
ematics and it is generally regarded as a branch of com-
binatorics. Graph is a widely used tool for solving a 

combinatorial problem in differene areas such as geometry, 
algebra, number theory, topology, optimization and computer 
science. Most important thing which is to be noted is that, any 
problem which can be solved by any graph technique can only 
be modeled as a weighted graph problem. Distance and cen-
tral concepts play an important role in applications related 
with graphs and weighted graphs. Several authors including 
Bondy  and Fan [2, 3, 4], Broersma, Zhang and Li [12], Sunil 
Mathew and M S Sunitha [7, 8, 9, 10, 11, 12] introduced many 
connectivity concepts in weighted graphs following the works 
of Dirac [5] and Grotschel [6]. 
       In this article, we introduce three new sequences in 
weighted graphs. These concepts are derived by using the 
notion of connectivity in weighted graphs. In a weighted 
graph model,  for example, in an information net work or in 
an electric circuit, the reduction of flow between the pairs of 
nodes is more relevant and may frequently occur than total 
disruption of the entire net work [9, 10, 14]. Finding the cenre 
of a weighted graph is useful in facility location problems 
where the goal is to minimize the distance to the facility. For 
example, placing a hospital at a central point reduces the 
longest distance the ambulance has to travel. This concept is 
our motivation.  As weighted graphs are generalized strctures 
of graphs, the concepts introduced in this article also general-
ize the classic ideas in graph theory. 
        

2 PRELIMINARIES 
       A weighted graph G: (V, E, W) is a graph in which every 
arc e is assigned a nonnegative real number w(e) called the 
weight of e [1]. In a weighted graph G: (V, E, W) the strength 
of a path P = v0 e1v1 e2 v2 …en vn is defined and denoted by 
S(P) = min{w(e1), w(e2),  w(e3), …, w(en)} [10].  The strength of 
connectedness of a pair of nodes u and v in G is defined and 
denoted by CONNG(u, v) = max{S(P)/ P is a u- v path in G} 
[9]. A u – v path P is called a strongest u – v path if S(P) = 
CONNG(u, v) [9]. A node w is called a partial cut node (p cut 
node) of G if there exists a pair of nodes u, v in G such that  u 
≠ v ≠ w and CONNG-w(u, v) < CONNG(u, v) [9]. A graph 
without p- cut nodes is called a partial block (p- block) [9]. It is 
also proved in [9] that a node w in a weighted graph G is a p- 
cut node of G if and only if w is an internal node of every max-
imum spanning tree of G. A connected weighted graph G: (V, 
E, W) is called a partial tree (p- tree) if G has a spanning sub-
graph F: (V, E’, W’) which is a tree, where for all arcs e = (u, v) 
of G which are not in F, CONNG (u, v) > w(e) [9]. An arc e = 
(u, v) is called α- strong if CONNG-e(u, v) < w(e) and β- strong 
if CONNG-e(u, v) = w(e) and a δ- arc if   CONNG-e(u, v) > w(e). 
An arc is called strong if it is either α- strong or β- strong [9].       

 
. 

3 SEQUENCES IN A WEIGHTED GRAPH  
In this section, we define three types of sequences. These are 
based on α and β arcs in a weighted graph. 

3.1 Definition 
Let G (V, E, W) be a connected weighted graph with ǀVǀ = p. 
Then a finite sequence αs (G) = (n1, n2, n3, ...,  np) ϵ 

pZ +
0 is 

called theα- sequence of G if ni = number of α- strong arcs in-
cident on vertex vi and = 0 if no α- strong arc is incident on vi. 
 If there is no confusion regarding G, we use the notation αs 

instead of αs (G). 

3.2 Definition 
Let G: (V, E, W) be a connected weighted graph with ǀVǀ = p. 

G 
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Then a finite sequence βs (G) = (n1, n2, n3, ..., np) ϵ 
pZ +

0 is 
called the β- sequence of G if ni = number of β- strong arcs 
incident on vertex vi and = 0 if no β- strong arc is incident on 
vi. 
 If there is no confusion regarding G, we use the notation βs 

instead of βs (G). 

3.3 Definition 
Let G: (V, E, W) be a connected weighted graph with ǀVǀ = p. 
Then a finite sequence Ss (G) = (n1, n2, n3, ...,  np) ϵ 

pZ +
0 is 

called the strong  sequence of G if ni = number of  strong arcs 
incident on vertex vi and = 0 if no  strong arc is incident on vi. 
 If there is no confusion regarding G, we use the notation Ss 

instead of Ss (G). 

3.4 Example 
In the following figure, all these sequences are illustrated. 

 
 

 
 

 
 
 
 

 
 
 

αs = (1, 2, 0, 1) 
βs = (0, 1, 2, 1) 
Ss = (1, 3, 2, 2) 

4 SOME NECESSARY CONDITIONS 
In this section, we present some necessary conditions which 
must be satisfied by a partial tree. 

 

4.1 Theorem 
If G: (V, E, W) is a partial tree and ǀVǀ = p, then  αs(G) ϵ

P

Z +  
That means all the entries in αs(G) is at least unity. 

Proof:  
By definition of αs(G), it is clear that all of it’s elements are greater 
than or equal to zero. We want to prove that all the elements in αs(G) 
are at least unity. Suppose the contrary. Let the ith element in αs(G) 
,say, n i be zero.  Since ni = 0, the corresponding node vi  will not be 
incident with any α- strong arc. This will result in the disconnection 
of the maximum spanning tree F of G, which is a contradiction to the 
definition of F. So our assumption is wrong and hence all the ele-
ments in αs(G) are at least unity. This completes the proof of the 
theorem. 

The condition in the above theorem is not sufficient as seen 
from the following example 

 
 

4.2 Example 
 

In this graph, αs (G) = (1, 1, 1, 1, 1, 1). But the graph is not a 
partial tree. 

4.3 Theorem 
Let G: (V, E, W) be a connected weighted graph such that ǀVǀ = 
p. Let t be a positive integer such that t ≤ p. If αs (G) contains t ele-
ments which are greater than or equal to 2, then G has exactly t par-
tial cut nodes. 

Proof:  
Let G: (V, E, W) be a partial tree. Let F be the spannoing tree of 
G with the property given in the definition of partial trees. 
Then the internal nodes of F are the partial cut nodes of G [12]. 
Also we know that, if a node is common to more than one α- 
strong arc, then it is a partial cut node [12]. So the node of G 
which corresponds to an entry in αs (G) which is greater than 
or equal to 2 must be a partial cut node. This completes the 
proof of the theorem. 
 If the condition in the above theorem was sufficient, we will 
be able to identify the partial cutnodes of G with the infor-
mation about the α- sequence of G. But due to non sufficiency, 
we can get the number of partial cut nodes of G only. This fact 
is illustrated in the following example. 
 

4.3 Example 
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In this graph, node d is a cut node and hence a a partial cut 
node, but entry corresponding to the α- eequence is 0.  

5 CHARACTERIZATION OF PARTIAL TREES 
In this section, we characterize partial trees using β- sequence 
of G. By (0),  we mean the zero sequence which contains only 
zeros. 

 

5.1 Theorem 
A connected weighted graph G: (V, E, W) is a partial tree if 
and only if βs (G) = (0).  

 

Proof:  
Let G: (V, E, W) be a connected weighted graph. Suppose 

that G is a partial tree. If G is a weighted tree, then all the arcs 
of G are bridges and hence partial bridges. Now an arc e = (u, 
v) in G is a partial bridge if and only if it is α- strong [12]. Thus 
all the arcs in G are α- strong. So G has no β- strong arcs and 
hence βs (G) = (0). 

If G is not a weighted tree, then G has a weighted cycle, 
say, C. Since G is a partial tree, there exists an arc e = (u, v) 
such that CONNG-e (u, v) > w (e), where G-e is the subgraph of 
G obtained by deleting the arc e from G [12]. That means e is a 
δ arc. If G-e is a weighted spanning tree of G, all the arcs in G-
e are α. Hence G has no β- strong arcs. So βs (G) = (0). If G-e is 
not a weighted spanning tree of G, then continue the above 
procedure of deleting δ arcs from G-e until we get a weighted 
spanning tree. 

Conversely suppose that βs (G) = (0). We have to prove that 
G is a partial tree.  If G has no cycles, then G is a weighted tree 
and hence a partial tree. Suppose that G has a cycle, sy, C. 
Then C wil contain only α- strong and δ arcs. Also note that all 
arcs of C cannot be α- strong, since otherwise it will contradict 
the definition of α- strong arcs. Thus there exists atleast one δ 
arc in C. If we delete e from C, we get a maximum spanning 
tree of G. If not remove one δ arc from existing weighted cy-
cles from G. Continue this procedure until we get a maximum 
spanning trer of G. Hence G is a partial tree. 

6 CONCLUSION 
In this article, three types of sequences in weighted graphs are 
introduced. As reduction in strength between two nodes is 
more important and useful in practical applications than total 
disconnection of the entire graph, the authors made use of 
connectivity concepts in defining the sequences. A special in-
terest on characterizing partal tree structure can be seen as 
they are applied widely. Eventhough this structure has got 
many characterizations; here we did it in a simpler way using 
β- sequences.  
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